180 research outputs found

    Strainer: software for analysis of population variation in community genomic datasets

    Get PDF
    Background: Metagenomic analyses of microbial communities that are comprehensive enough to provide multiple samples of most loci in the genomes of the dominant organism types will also reveal patterns of genetic variation within natural populations. New bio-informatic tools will enable visualization and comprehensive analysis of this sequence variation and inference of recent evolutionary and ecological processes. Results: We have developed a software package for analysis and visualization of genetic variation in populations and reconstruction of strain variants from otherwise co-assembled sequences. Sequencing reads can be clustered by matching patterns of single nucleotide polymorphisms to generate predicted gene and protein variant sequences, identify conserved intergenic regulatory sequences, and determine the quantity and distribution of recombination events. Conclusion: The Strainer software, a first generation metagenomic bioinformatics tool, facilitates comprehension and analysis of heterogeneity intrinsic in natural communities. The program reveals the degree of clustering among closely related sequence variants and provides a rapid means to generate gene and protein sequences for functional, ecological, and evolutionary analyses

    Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea

    Get PDF
    The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANME partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors

    Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family Methanoperedenaceae

    Get PDF
    Anaerobic oxidation of methane (AOM) is an important biological process responsible for controlling the flux of methane into the atmosphere. Members of the archaeal family Methanoperedenaceae (formerly ANME-2d) have been demonstrated to couple AOM to the reduction of nitrate, iron, and manganese. Here, comparative genomic analysis of 16 Methanoperedenaceace metagenome-assembled genomes (MAGs), recovered from diverse environments, revealed novel respiratory strategies acquired through lateral gene transfer (LGT) events from diverse archaea and bacteria. Comprehensive phylogenetic analyses suggests that LGT has allowed members of the Methanoperedenaceae to acquire genes for the oxidation of hydrogen and formate, and the reduction of arsenate, selenate and elemental sulfur. Numerous membrane-bound multi-heme c type cytochrome complexes also appear to have been laterally acquired, which may be involved in the direct transfer of electrons to metal oxides, humics and syntrophic partners

    Paleoseismological data from a new trench across the El Camp Fault(Catalan Coastal Ranges, NE Iberian Peninsula)

    Get PDF
    The El Camp Fault (Catalan Coastal Ranges, NE Iberian Peninsula) is a slow slipping normal fault whose seismic potential has only recently been recognised. New geomorphic and trench investigations were carried out during a training course across the El Camp Fault at the La Porquerola alluvial fan site. A new trench (trench 8) was dug close to a trench made previously at this site (trench 4). With the aid of two long topographic profiles across the fault scarp we obtained a vertical slip rate ranging between 0.05 and 0.08 mm/yr. At the trench site, two main faults, which can be correlated between trenches 8 and 4, make up the fault zone. Using trench analysis three paleoseismic events were identified, two between 34.000 and 125.000 years BP (events 3 and 2) and another event younger than 13 500 years BP (event 1), which can be correlated, respectively, with events X (50.000- 125.000 years BP), Y (35.000-50.000 years BP) and Z (3000-25.000 years BP). The last seismic event at the La Porquerola alluvial fan site is described for the first time, but with some uncertainties

    Approccio alla lingua italiana per allievi stranieri - ALIAS

    Get PDF
    Contiene, di P. E. Balboni, - "Approccio alla lingua italiana per allievi stranieri", pp. 55-71 - "Problemi interculturali nei rapporti con allievi stranieri e con le loro famiglie", pp. 73-90 - "La fomrazione dei docenti: i contenuti e gli strumenti di base", pp. 181-184

    Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae

    Get PDF
    Anaerobic oxidation of methane (AOM) is a major biological process that reduces global methane emission to the atmosphere. Anaerobic methanotrophic archaea (ANME) mediate this process through the coupling of methane oxidation to different electron acceptors, or in concert with a syntrophic bacterial partner. Recently, ANME belonging to the archaeal family Methanoperedenaceae (formerly known as ANME-2d) were shown to be capable of AOM coupled to nitrate and iron reduction. Here, a freshwater sediment bioreactor fed with methane and Mn(IV) oxides (birnessite) resulted in a microbial community dominated by two novel members of the Methanoperedenaceae, with biochemical profiling of the system demonstrating Mn(IV)-dependent AOM. Genomic and transcriptomic analyses revealed the expression of key genes involved in methane oxidation and several shared multiheme c-type cytochromes (MHCs) that were differentially expressed, indicating the likely use of different extracellular electron transfer pathways. We propose the names “Candidatus Methanoperedens manganicus” and “Candidatus Methanoperedens manganireducens” for the two newly described Methanoperedenaceae species. This study demonstrates the ability of members of the Methanoperedenaceae to couple AOM to the reduction of Mn(IV) oxides, which suggests their potential role in linking methane and manganese cycling in the environment

    Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics

    Get PDF
    Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl–coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota

    Insights into the Ecological Roles and Evolution of Methyl-Coenzyme M Reductase-Containing Hot Spring Archaea

    Get PDF
    Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor
    corecore